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(4) 'H NMR spectra were determined in chloroform-d unless noted other­
wise. 

(5) D. J. Cram, 0. Theander, H. Jager, and M. K. Stanfield, J, Am. Chem. Soc., 
85, 1430-1437(1963). 

(6) W. Hofheinz and W. E. Oberhansli, HeIv. Chim. Acta, 60, 660-669 
(1977). 

(7) Dysidin was isolated from the sponge Dysidea herbacea. Interestingly 
blue-green algae are associated with this sponge. 

(8) Using the program CONGEN 24 gross structures were assembled from the 
following fragments: Ri = 2b, R2 = 2a with one Me group on the nitrogen, 
two XCH2X groups with no protons on the X atoms, one > C = C H - group, 
one MeO—C=CH- group, and a chlorine atom. Only one of these 24 
structures satisfactorily explains the degradation of malyngamide A to 8, 
9, and 10. We thank T. Varkony and C. Djerassi for this determination. 

(9) Oil; mass spectrum m/e (rel intensity) 401 (1), 399 (4, M+), 384 (3), 364 
(11), 332 (8), 315 (7), 259 (26), 257 (75), 222 (22), 205 (20), 203 (57), 158 
(35), 146 (53), 143 (100), 111 (41); high resolution mass spectrum m/e 
399.2503 (calcd for C22H38

35CINO3, 399.2540); UV (MeOH) Xmax 212 nm 
(t 3900) assigned to the x - * JT* transition for the /3,7-unsaturated ketone 
carbonyl; IR (neat) 1718, 1655, 980 cm"1 ; 1H NMR d 6.07 (1 H, brs), 5.50 
(2 H, br t), 4.24 (2 H, br s), 3.33 (3 H, s), 3.16 (2 H, s, on 1 H, br quintet), 2.92 
(3 H, s), 2.34 (4 H, br m), 2.15 (3 H, s, on 2 H, br m), 1.26 (12 H, br s with 
low-field sh), 0.88 (3 H, br t, J = 7 Hz). Two signals in the 1H NMR spectrum 
are doubled in a 6:1 ratio (h 6.07/6.11, assigned to =CHCI, and 2.92/2.83, 
assigned to the NCH3 for the two conformers); irradiation at h 2.92 produces 
a 19 % positive NOE in the signal at h 6.07 and a 5 % negative NOE in the 
methylene signal at h 4.24. 

(10) Oil; mass spectrum m/e (rel intensity) 385 (>1), 312 (2), 241 (12), 200 (23), 
187 (19), 143 (25); high resolution mass spectrum m/e 385.2838 (M+; calcd 
for C21H39NO5, 385.2828), 312.2511 (calcd for C18H34NO3, 312.2539), 
241.2173 (calcd for C15H29O2, 241.2168), 200.0931 (calcd for C9H14NO4, 
200.0923), 187.0847 (calcd for C8H13NO4, 187.0845); UV (MeOH) Xmax 
213 nm (t 5400) — 271 (11 000), 214 (7900) in methanolic NaOH; IR 1735, 
1720 (sh), 1650 cm - 1 ; 1H NMR <5 4.24 (2 H on C-4, s), 3.71 (3 H, s, ester 
OMe), 3.46 (2 H on C-2, s), 3.28 (3 H, s), 3.05 (1 H, br quintet), 3.02 (3 H, 
s, W-Me), 2.30 (2 H, brt, J= 7 Hz), 1.65-1.20 (20 H, br m), 0.83 (3 H, br 
t, J = 7 Hz). 

(11) Identified by high resolution mass spectrum: m/e 385.3169 (M+, calcd for 
C22H43NO4, 385.3192), 312.2874 (calcd for C19H38NO2, 312.2903), 
241.2173 (calcd for C15H29O2, 241.2168), 200.1296 (calcd for C10H18NO3, 
200.1287), 187.1198 (calcd for C9H17NO3, 187.1208). 
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Preparation of [NP(p-OC6H4Li)2]3 by Metal-Halogen 
Exchange, and Its Reactions with EIectrophiles 

Sir: 

The reactions of cyclic and polymeric /ia/ophosphazenes 
with organolithium reagents have been studied extensively,1-3 

but the reactions of organometallic reagents with cyclic and 
polymeric organo-functional phosphazenes have not been 
explored in detail. Of particular interest to us were reactions 
that could yield carbanionic species bound directly to phos-
phazene cyclic and polymeric compounds. Such reactive in­
termediates could be used to synthesize a wide range of new 
cyclic and high polymeric phosphazenes not accessible by other 
synthetic routes, including those that might form unusual Ii-
gands for transiton metals. 

We have found that hexa(p-bromophenoxy)cyclotriphos-
phazene (1) undergoes a high yield metal-halogen exchange 
reaction with n-butyllithium to yield the hexalithio derivative 
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(II). The reaction conditions employed involved a rapid ad­
dition of rt-butyllithium (1.6 M in hexane) in a 15% excess to 
a tetrahydrofuran solution of I at —40 0C. 

The presence of II was confirmed by its reactions at —40 0C 
with electrophiles, such as deuterium oxide, carbon dioxide, 
chlorodiphenylphosphine, and triphenyltin chloride to yield 
the following derivatives: [NP(^-OC6H4D)2I3 (III), 
[NP(P-OC6H4COOH)2J3 (IV), INPb-OC6H4P(C6HOz]7I3 
(V), and [NP[/7-OC6H4Sn(C6H5)3]2!3 (VI). All of these 
compounds were identified by 31P NMR spectra, infrared 
spectra, and chemical analysis. The position of lithium incor­
poration on the aromatic ring was confirmed by the ' 3C N MR 
spectrum of compound III which revealed both the presence 
of a triplet structure and a decrease in the resonance signal for 
the carbon at the para position of the aromatic unit when 
compared with the 13C NMR spectrum of [NP(OC6H5)2]3.4 

The absence of significant skeletal cleavage during metalation 
is a considerable advantage for the use of such processes in 
phosphazene high polymer syntheses. 

The binding of metal complexes to phosphazene compounds 
is of structural, catalytic, and potential biomedical impor­
tance.3-6 This reaction system possesses a capacity for the 
binding of metals both through reactions of 11 with metal ha-
lides, as demonstrated by the synthesis of compound VI, and 
through the reactions of compound V with metal complexes. 
To illustrate this second reaction pathway, V was allowed to 
react with H2Os3(CO)io (VII), a compound which has been 
demonstrated previously to react with tertiary phosphines to 
yield monosubstituted phosphine osmium cluster compounds, 
H2Os3(CO)io(PR3).

7 The high reactivity of this osmium 
cluster (VII) was ascribed to a metal-metal double bond.8 

When compound V was allowed to react with a deficiency of 
VU at 25 0C in methylene chloride solvent, the expected color 
change from violet to yellow was observed. Furthermore in­
frared spectral comparisons of the carbonyl stretching regions 
for the osmium complex derived from triphenylphosphine and 
that derived from V confirmed the existence of metal binding 
through the phosphine residues of V rather than through the 
skeletal nitrogen atoms. 

Experiments are now underway in our laboratory to extend 
these small molecule cyclic model reactions to high polymeric 
phosphazenes. 
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